16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90595/595G Series

MB90598/F598/F598G/V595/V595G

■ DESCRIPTION

The MB90595/595G series with FULL-CAN*1 interface and FLASH ROM is especially designed for automotive and industrial applications. Its main features are two on board CAN Interfaces, which conform to V2.0 Part A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a normal full CAN approach.

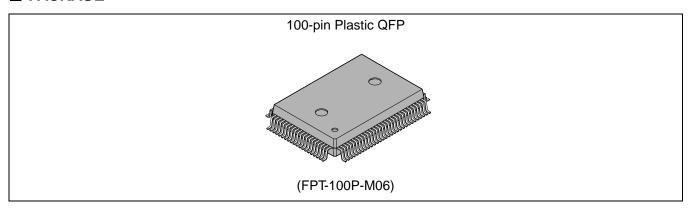
The instruction set of F²MC-16LX CPU core inherits an AT architecture of the F²MC*² family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data.

The MB90595/595G series has peripheral resources of 8/10-bit A/D converters, UART (SCI), extended I/O serial interface, 8/16-bit PPG timer, I/O timer (input capture (ICU), output compare (OCU)) and stepping motor controller.

- *1: Controller Area Network (CAN) License of Robert Bosch GmbH
- *2: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

Clock


Embedded PLL clock multiplication circuit

Operating clock (PLL clock) can be selected from divided-by-2 of oscillation or one to four times the oscillation (at oscillation of 4 MHz, 4 MHz to 16 MHz).

Minimum instruction execution time: 62.5 ns (operation at oscillation of 4 MHz, four times the oscillation clock, Vcc of 5.0 V)

(Continued)

PACKAGE

(Continued)

Instruction set to optimize controller applications

Rich data types (bit, byte, word, long word)

Rich addressing mode (23 types)

Enhanced signed multiplication/division instruction and RETI instruction functions

Enhanced precision calculation realized by the 32-bit accumulator

• Instruction set designed for high level language (C language) and multi-task operations

Adoption of system stack pointer

Enhanced pointer indirect instructions

Barrel shift instructions

- Program patch function (for two address pointers)
- Enhanced execution speed: 4-byte instruction queue
- Enhanced interrupt function: 8 levels, 34 factors
- Automatic data transmission function independent of CPU operation

Extended intelligent I/O service function (EI2OS): Up to 10 channels

Embedded ROM size and types

Mask ROM: 128 Kbytes Flash ROM: 128 Kbytes

Embedded RAM size: 4 Kbytes (MB90V595/595G: 6 Kbytes)

Flash ROM

Supports automatic programming, Embedded Algorithm TM*

Write/Erase/Erase-Suspend/Resume commands

A flag indicating completion of the algorithm

Hard-wired reset vector available in order to point to a fixed boot sector

Erase can be performed on each block

Block protection with external programming voltage

• Low-power consumption (stand-by) mode

Sleep mode (mode in which CPU operating clock is stopped)

Stop mode (mode in which oscillation is stopped)

CPU intermittent operation mode

Hardware stand-by mode

• Process: 0.5 μm CMOS technology

• I/O port

General-purpose I/O ports: 78 ports

Push-pull output and Schmitt trigger input.

Programmable on each bit as I/O or signal for peripherals.

• Timer

Watchdog timer: 1 channel

8/16-bit PPG timer: 8/16-bit × 6 channels

16-bit re-load timer: 2 channels

• 16-bit I/O timer

Input capture: 4 channels
Output compare: 4 channels

Extended I/O serial interface: 1 channel

• UARTO

With full-duplex double buffer (8-bit length)

Clock asynchronized or clock synchronized (with start/stop bit) transmission can be selectively used.

• UART1 (SCI)

With full-duplex double buffer (8-bit length)

Clock asynchronized or clock synchronized serial transmission (I/O extended transmission) can be selectively used.

- Stepping motor controller (4 channels)
- External interrupt circuit (8 channels)

A module for starting an external intelligent I/O service (El²OS) and generating an external interrupt which is triggered by an external input.

- Delayed interrupt generation module: Generates an interrupt request for switching tasks.
- 8/10-bit A/D converter (8 channels)

8/10-bit resolution can be selectively used.

Starting by an external trigger input.

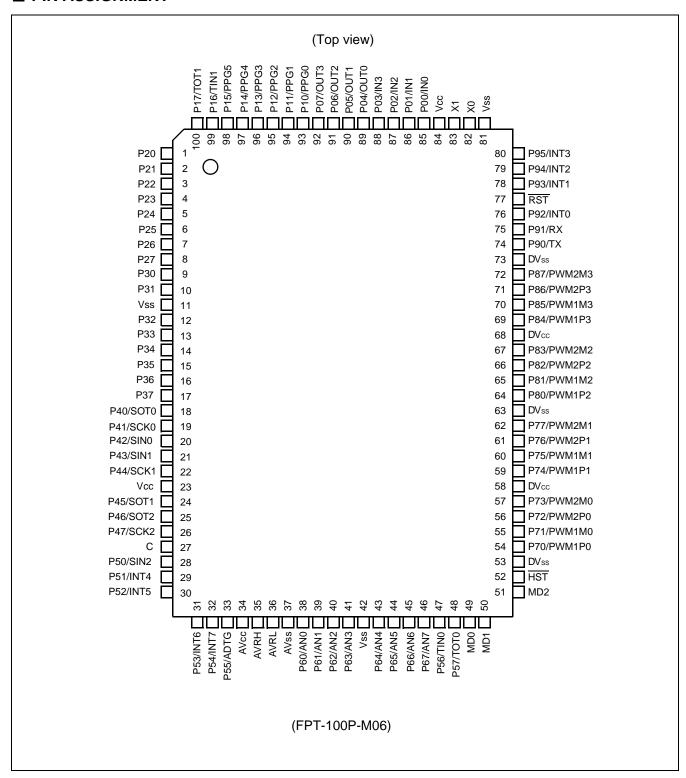
• FULL-CAN interface: 1 channel

Conforming to Version 2.0 Part A and Part B

Flexible message buffering (mailbox and FIFO buffering can be mixed)

- 18-bit Time-base counter
- External bus interface: Maximum address space 16 Mbytes
- *: Embedded Algorithm is a trademark of Advanced Micro Devices Inc.

■ PRODUCT LINEUP

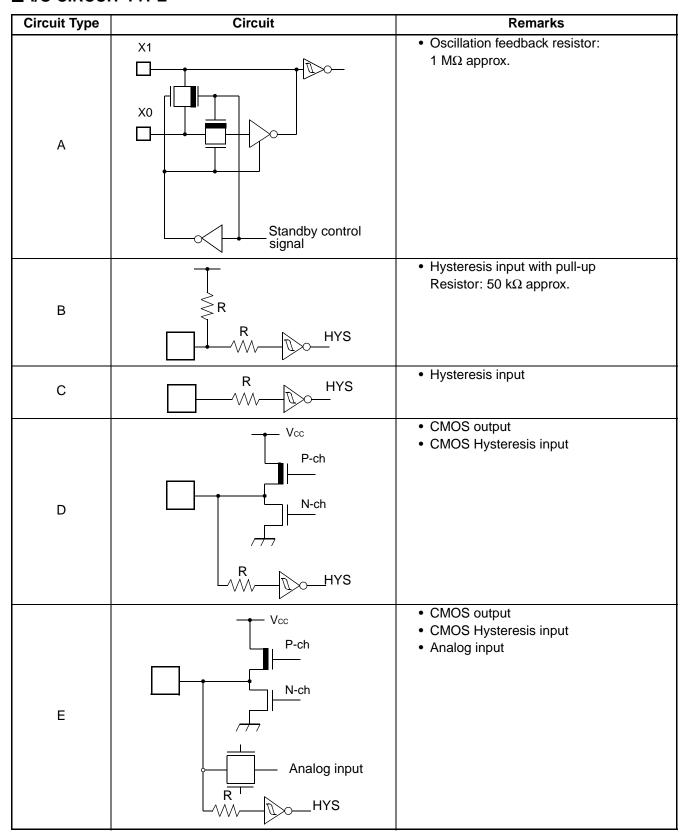

	Features	MB90598	MB90F598/F598G	MB90V595/V595G			
Classif	ication	Mask ROM product	Flash ROM product	Evaluation product			
ROM s	iize	128 Kbytes	128 Kbytes Boot block Hard-wired reset vector	None			
RAM s	ize	4 Kbytes	4 Kbytes	6 Kbytes			
Emulat supply	tor-specific power	— None					
CPU fu	unctions	Instruction bit length: 8 bits, Instruction length: 1 byte to Data bit length: 1 bit, 8 bits, Minimum execution time: 62 Interrupt processing time: 1.8	he number of instructions: 351 astruction bit length: 8 bits, 16 bits astruction length: 1 byte to 7 bytes ata bit length: 1 bit, 8 bits, 16 bits linimum execution time: 62.5 ns (at machine clock frequency of 16 MHz) atterrupt processing time: 1.5 µs (at machine clock frequency of 16 MHz, minimum value)				
UARTO)	-	esion (500 K/1 M/2 Mbps) ission (4808/5208/9615/10417/ /500000 bps at machine clo ned by bi-directional serial trans	ock frequency of 16 MHz)			
UART1	I (SCI)	Clock asynchronized transm	ssion (62.5 K/125 K/250 K/500 H ission (1202/2404/4808/9615/3 ned by bi-directional serial trans	1250 bps)			
8/10-bi	it A/D converter	Scan conversion mode (conversion mode) Continuous conversion mode	converts selectively used. (converts selected channel once verts two or more successive channels) e (converts selected channel coverts selected channel and stop	annels and can program ontinuously)			
Number of channels: 6 (8/16-bit × 6 channels) PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be outp Pulse interval: fsys, fsys/2¹, fsys/2³, fsys/2⁴ (fsys = system 128μs (fosc = 4MHz : oscillation clock frequency)				output. /stem clock frequency)			
16-bit F	Reload timer	Number of channels: 2 Operation clock frequency: fsys/2 ¹ , fsys/2 ³ , fsys/2 ⁵ (fsys = System clock frequency) Supports External Event Count function					
16-bit I/O	16-bit Output compares	Number of channels: 4 Pin input factor: A match sig	nal of compare register				
timer	Input captures	Number of channels: 4 Rewriting a register value up	oon a pin input (rising, falling, or	both edges)			

Features	MB90598	MB90F598/F598G	MB90V595/V595G			
CAN Interface	Number of channels: 1 Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1Mbps CAN bit timing setting: MB90xxx:TSEG2 ≥ RSJW+2TQ MB90xxxG:TSEG2 ≥ RSJW					
Stepping motor controller (4 channels)		Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel				
External interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" level input, or an "L" level input.					
Serial IO	Clock synchronized transmission (31.25 K/62.5 K/125 K/500 K/1 Mbps at system clock frequency of 16 MHz) LSB first/MSB first					
Watchdog timer	Reset generation interval: 3.4 (at oscillation of 4 MHz, mini	58 ms, 14.33 ms, 57.23 ms, 458 mum value)	3.75 ms			
Flash Memory	Supports automatic programming, Embedded Algorithm ™ and Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Writer from Minato Electronics Inc.					
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/clock timer/hardware stand-by					
Process	CMOS					
Power supply voltage for operation*2	+5 V±10 %					
Package	QF	P-100	PGA-256			

^{*1:} It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.
Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

^{*2:} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

■ PIN ASSIGNMENT


■ PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function
82	X0	۸	Ossillator nin
83	X1	Α	Oscillator pin
77	RST	В	Reset input
52	HST	С	Hardware standby input
0E to 00	P00 to P03		General purpose IO
85 to 88	IN0 to IN3	G	Inputs for the Input Captures
00 to 00	P04 to P07 General purpose IO		General purpose IO
89 to 92	OUT0 to OUT3	G	Outputs for the Output Compares.
02 to 00	P10 to P15	Б	General purpose IO
93 to 98	PPG0 to PPG5	D	Outputs for the Programmable Pulse Generators
00	P16	Б	General purpose IO
99	TIN1	D	TIN input for the 16-bit Reload Timer 1
400	P17	Б.	General purpose IO
100	TOT1	D	TOT output for the 16-bit Reload Timer 1
1 to 8	P20 to P27	G	General purpose IO
9 to 10	P30 to P31	G	General purpose IO
12 to 16	P32 to P36	G	General purpose IO
17	P37	D	General purpose IO
40	P40	0	General purpose IO
18	SOT0	G	SOT output for UART 0
40	SOT0		General purpose IO
19	SCK0	G	SCK input/output for UART 0
00	P42	0	General purpose IO
20	SIN0	G	SIN input for UART 0
0.4	P43	0	General purpose IO
21	SIN1	G	SIN input for UART 1
00	P44	0	General purpose IO
22	SCK1	G	SCK input/output for UART 1
P45 General purpose IO		0	General purpose IO
24	SOT1	SOT output for UART 1	
0.5	P46		General purpose IO
25	SOT2	G	SOT output for the Serial IO
20	P47		General purpose IO
26	SCK2	G	SCK input/output for the Serial IO

Pin no.	Pin name	Circuit type	Function			
28	P50	D	General purpose IO			
20	SIN2	D	SIN Input for the Serial IO			
20 to 22	P51 to P54		General purpose IO			
29 to 32	INT4 to INT7	D	External interrupt input for INT4 to INT7			
33	P55	D	General purpose IO			
33	ADTG	D	Input for the external trigger of the A/D Converter			
38 to 41	P60 to P63	E	General purpose IO Inputs for the A/D Converter General purpose IO			
30 10 41	AN0 to AN3	_	General purpose IO Inputs for the A/D Converter			
43 to 46	P64 to P67	E	General purpose IO			
43 10 40	AN4 to AN7	_	Inputs for the A/D Converter			
47	P56	D	General purpose IO			
47	TIN0	D	TIN input for the 16-bit Reload Timer 0			
48	P57	D	General purpose IO			
40	ТОТ0	D	TOT output for the 16-bit Reload Timer 0			
	P70 to P73		General purpose IO			
54 to 57	PWM1P0 PWM1M0 PWM2P0 PWM2M0	F	Output for Stepper Motor Controller channel 0			
	P74 to P77		General purpose IO			
59 to 62	PWM1P1 PWM1M1 PWM2P1 PWM2M1	F	Output for Stepper Motor Controller channel 1			
	P80 to P83		General purpose IO			
64 to 67	PWM1P2 PWM1M2 PWM2P2 PWM2M2	F	Output for Stepper Motor Controller channel 2			
	P84 to P87		General purpose IO			
69 to 72	PWM1P3 PWM1M3 PWM2P3 PWM2M3	F	Output for Stepper Motor Controller channel 3			
74	P90	P90 General purpose IO				
74	TX	ט	TX output for CAN Interface			
P91 General purpose IO		General purpose IO				
75	RX	ט	RX input for CAN Interface			

Pin no.	Pin name	Circuit type	Function
76	P92	<u> </u>	General purpose IO
70	INT0	D	External interrupt input for INT0
78 to 80	P93 to P95 General purpose IO		General purpose IO
70 10 00	INT1 to INT3	Б	External interrupt input for INT1 to INT3
58, 68	DVcc	_	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)
53, 63, 73	DVss	_	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)
34	AVcc	Power supply	Dedicated power supply pin for the A/D Converter
37	AVss	Power supply	Dedicated ground pin for the A/D Converter
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter
49, 50	MD0 MD1	С	Operating mode selection input pins. These pins should be connected to Vcc or Vss.
51	MD2	Н	Operating mode selection input pin. This pin should be connected to Vcc or Vss.
27	С	_	External capacitor pin. A capacitor of 0.1μF should be connected to this pin and Vss.
23, 84	Vcc	Power supply	Power supply pins (5.0 V).
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).

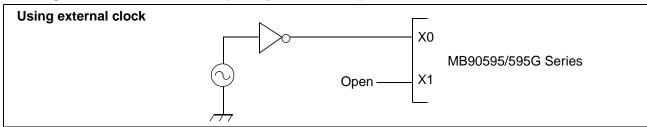
■ I/O CIRCUIT TYPE

Circuit Type	Circuit	Remarks
F	P-ch High current N-ch HYS	CMOS high current output CMOS Hysteresis input
G	P-ch N-ch R T TTL	CMOS output CMOS Hysteresis input TTL input (MB90F598/F598G, only in Flash mode)
Н	R HYS	Hysteresis input Pull-down Resistor: 50 Ω approx. (except MB90F598/F598G)

HANDLING DEVICES

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss. When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating. In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

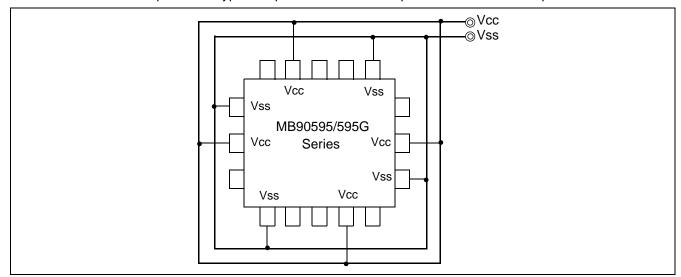

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 $k\Omega$ resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



(4) Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μF between V_{cc} and V_{ss} pins near the device.

(5) Pull-up/down resistors

The MB90595 Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

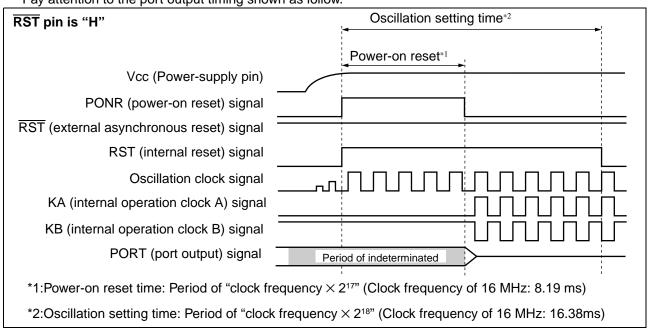
(8) Connection of Unused Pins of A/D Converter

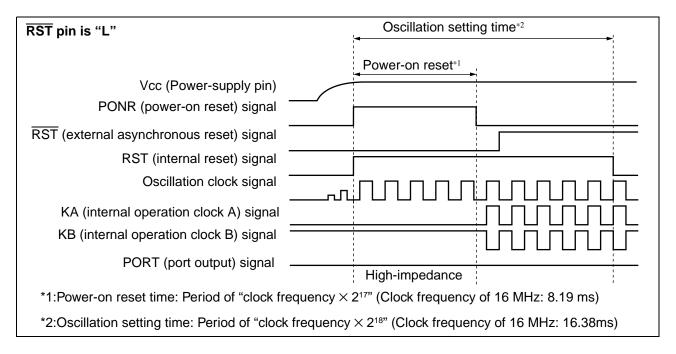
Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(10) Notes on Energization


To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 μ s or more (0.2 V to 2.7 V).


(11) Indeterminate outputs from ports 0 and 1

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

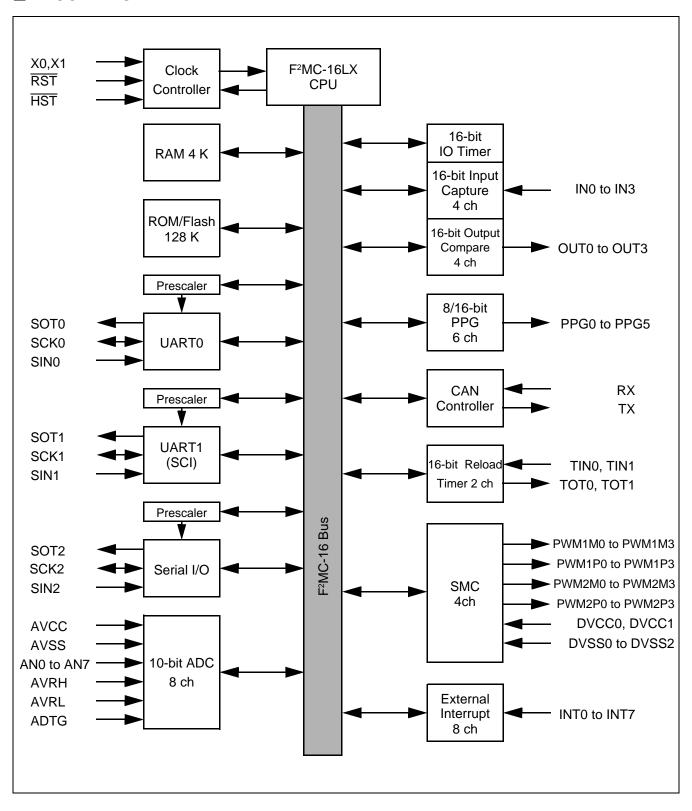
- If RST pin is "H", the outputs become indeterminate.
- If RST pin is "L", the outputs become high-impedance.

Pay attention to the port output timing shown as follow.

(12) Initialization

The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions


In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(14) Using REALOS

The use of El²OS is not possible with the REALOS real time operating system.

■ BLOCK DIAGRAM

■ MEMORY SPACE

The memory space of the MB90595 Series is shown below

The memory space of the Mi				
	MB90V595/V595G		MB90598/F598/F59	18G
FFFFFF FF0000h	ROM (FF bank)	FFFFFн FF0000н	ROM (FF bank)	
FEFFFFH FE0000H	ROM (FE bank)	FEFFFFH FE0000H	ROM (FE bank)	
FDFFFF _H FD0000 _H	ROM (FD bank)			
FCFFFFH FC0000H	ROM (FC bank)			
00FFFFн 004000н	ROM (Image of FF bank)	00FFFFн 004000н	ROM (Image of FF bank)	
001FFFн 001900н 0018FFн	Peripheral	001FFFн 001900н	Peripheral	
000100н	RAM 6 K	0010FFн 000100н	RAM 4 K	
0000BFн 000000н	Peripheral	0000ВFн 000000н	Peripheral	

Memory space map

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access $00C000_{\rm H}$, the contents of the ROM at FFC000_H are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000_H to FFFFFF_H looks, therefore, as if it were the image for $004000_{\rm H}$ to $00FFFF_{\rm H}$. Thus, it is recommended that the ROM data table be stored in the area of FF4000_H to FFFFFF_H.

■ I/O MAP

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн			•		
10н	Port 0 Direction Register	DDR0	R/W	Port 0	0 0 0 0 0 0 0 0 0
11н	Port 1 Direction Register	DDR1	R/W	Port 1	0 0 0 0 0 0 0 0 0в
12н	Port 2 Direction Register	DDR2	R/W	Port 2	0 0 0 0 0 0 0 0 0в
13н	Port 3 Direction Register	DDR3	R/W	Port 3	0 0 0 0 0 0 0 0 0в
14н	Port 4 Direction Register	DDR4	R/W	Port 4	0 0 0 0 0 0 0 0 0в
15н	Port 5 Direction Register	DDR5	R/W	Port 5	0 0 0 0 0 0 0 0 В
16н	Port 6 Direction Register	DDR6	R/W	Port 6	0 0 0 0 0 0 0 0 0в
17н	Port 7 Direction Register	DDR7	R/W	Port 7	0 0 0 0 0 0 0 0 В
18н	Port 8 Direction Register	DDR8	R/W	Port 8	0 0 0 0 0 0 0 0 0в
19н	Port 9 Direction Register	DDR9	R/W	Port 9	000000
1Ан		Reserv	red		
1Вн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	11111111
1Сн to 1Fн		Reserv	/ed		•
20н	Serial Mode Control Register 0	UMC0	R/W		0 0 0 0 0 1 0 0в
21н	Serial status Register 0	USR0	R/W		0 0 0 1 0 0 0 0в
22н	Serial Input/Output Data Register 0	UIDR0/ UODR0	R/W	UART0	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		0 0 0 0 0 0 0 X _B
24н	Serial Mode Register 1	SMR1	R/W		0 0 0 0 0 0 0 0 В
25н	Serial Control Register 1	SCR1	R/W		0 0 0 0 0 1 0 0в
26н	Serial Input/Output Data Register 1	SIDR1/ SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		0 0 0 0 1 _ 0 0в
28н	UART1 Prescaler Control Register	U1CDCR	R/W		01111В

Address	Register	Abbreviation	Access	Peripheral	Initial value
29н to 2Ан		Reserve	d		
2Вн	Serial IO Prescaler	SCDCR	R/W		01111в
2Сн	Serial Mode Control Register (low-order)	SMCS	R/W		0000в
2Dн	Serial Mode Control Register (high-order)	SMCS	R/W	Serial IO	0 0 0 0 0 0 1 Ов
2Ен	Serial Data Register	SDR	R/W		XXXXXXXX
2Fн	Edge Selector	SES	R/W		0в
30н	External Interrupt Enable Register	ENIR	R/W		0 0 0 0 0 0 0 0в
31н	External Interrupt Request Register	EIRR	R/W	F (XXXXXXXX
32н	External Interrupt Level Register	ELVR	R/W	External Interrupt	0 0 0 0 0 0 0 0 0в
33н	External Interrupt Level Register	ELVR	R/W		0 0 0 0 0 0 0 0в
34н	A/D Control Status Register 0	ADCS0	R/W		0 0 0 0 0 0 0 0в
35н	A/D Control Status Register 1	ADCS1	R/W	A/D Converter	0 0 0 0 0 0 0 0 0в
36н	A/D Data Register 0	ADCR0	R	A/D Converter	XXXXXXXX
37н	A/D Data Register 1	ADCR1	R/W		0 0 0 0 1 _ XX _B
38н	PPG0 Operation Mode Control Register	PPGC0	R/W	16-bit Program- mable Pulse Generator 0/1	0_0001в
39н	PPG1 Operation Mode Control Register	PPGC1	R/W		0_00001в
ЗАн	PPG0, 1 Output Pin Control Register	PPG01	R/W		000000в
3Вн		Reserve	d		1
3Сн	PPG2 Operation Mode Control Register	PPGC2	R/W	16-bit Program-	0_0001в
3Dн	PPG3 Operation Mode Control Register	PPGC3	R/W	mable Pulse	0_00001в
3Ен	PPG2, 3 Output Pin Control Register	PPG23	R/W	Generator 2/3	000000в
3Fн		Reserve	d		
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16-bit Program-	0_0001в
41н	PPG5 Operation Mode Control Register	PPGC5	R/W	mable Pulse	0_00001в
42н	PPG4, 5 Output Pin Control Register	PPG45	R/W	Generator 4/5	000000в
43н		Reserve	d		
44 H	PPG6 Operation Mode Control Register	PPGC6	R/W	16-bit Program-	0_0001в
45н	PPG7 Operation Mode Control Register	PPGC7	R/W	mable Pulse	0_00001в
46н	PPG6, 7 Output Pin Control Register	PPG67	R/W	Generator 6/7	000000в
47 H		Reserve	d		
48н	PPG8 Operation Mode Control Register	PPGC8	R/W	16-bit Program-	0_0001в
49н	PPG9 Operation Mode Control Register	PPGC9	R/W	mable Pulse	0_00001в
4Ан	PPG8, 9 Output Pin Control Register	PPG89	R/W	Generator 8/9	000000в
4Вн		Reserve	d		

4Сн	PPGA Operation Mode Control Register				Initial value		
40	1 1 6/1 Operation wode control register	PPGCA	R/W	16-bit	0_000_1В		
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	0_00001в		
4Ен	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	0 0 0 0 0 0B		
4 Fн		Reserved					
50н	Timer Control Status Register 0	TMCSR0	R/W		0 0 0 0 0 0 0 0 _B		
51н	Timer Control Status Register 0	TMCSR0	R/W		0000в		
52н	Timer 0/Reload Register 0	TMR0/ TMRLR0	R/W	16-bit Reload Timer 0	XXXXXXXX		
53н	Timer 0/Reload Register 0	TMR0/ TMRLR0	R/W		XXXXXXXX		
54н	Timer Control Status Register 1	TMCSR1	R/W		0 0 0 0 0 0 0 0 _B		
55н	Timer Control Status Register 1	TMCSR1	R/W		0000в		
56н	Timer Register 1/Reload Register 1	TMR1/ TMRLR1	R/W	16-bit Reload Timer 1	XXXXXXXX		
57н	Timer Register 1/Reload Register 1	TMR1/ TMRLR1	R/W		XXXXXXXX		
58н	Output Compare Control Status Register 0	OCS0	R/W	Output	000000		
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	00000		
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	000000		
5Вн	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	00000В		
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	0 0 0 0 0 0 0 0 _B		
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	$0\;0\;0\;0\;0\;0\;0_B$		
5Е н	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0 _B		
5Гн		Reserved					
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	0 0 0 0 0 0 _B		
61н		Reserved					
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	0 0 0 0 0 O _B		
63н		Reserved					
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0 _B		
65н	Reserved						
66н	Timer Data Register (low-order)	TCDT	R/W		0 0 0 0 0 0 0 0 0		
67н	Timer Data Register (high-order)	TCDT	R/W	IO Timer	0 0 0 0 0 0 0 0 _B		
68н	Timer Control Status Register	TCCS	R/W		0 0 0 0 0 0 0 0 В		
69н to 6Eн		Reserved					

Address	Register	Abbreviation	Access	Peripheral	Initial value
6 Fн	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	1в
70н	PWM1 Compare Register 0	PWC10	R/W		XXXXXXXX
71н	PWM2 Compare Register 0	PWC20	R/W	Stepping Motor	XXXXXXXX
72н	PWM1 Select Register 0	PWS10	R/W	Controller 0	000000
73н	PWM2 Select Register 0	PWS20	R/W		_ 0 0 0 0 0 0 0 _B
74н	PWM1 Compare Register 1	PWC11	R/W		XXXXXXXX
75н	PWM2 Compare Register 1	PWC21	R/W	Stepping Motor Controller 1	XXXXXXXX
76н	PWM1 Select Register 1	PWS11	R/W		000000
77н	PWM2 Select Register 1	PWS21	R/W		_ 0 0 0 0 0 0 0 _B
78н	PWM1 Compare Register 2	PWC12	R/W		XXXXXXXX
79н	PWM2 Compare Register 2	PWC22	R/W	Stepping Motor Controller 2	XXXXXXXX
7Ан	PWM1 Select Register 2	PWS12	R/W		000000
7Вн	PWM2 Select Register 2	PWS22	R/W		_ 0 0 0 0 0 0 0 _B
7Сн	PWM1 Compare Register 3	PWC13	R/W		XXXXXXXX
7Dн	PWM2 Compare Register 3	PWC23	R/W	Stepping Motor Controller 3	XXXXXXXX
7Ен	PWM1 Select Register 3	PWS13	R/W		000000
7 Fн	PWM2 Select Register 3	PWS23	R/W		_ 0 0 0 0 0 0 0 _B
80н to 8Fн	CAN Controller.	Refer to section	about C/	AN Controller	1
90н to 9Dн		Reserved	ı		
9Ен	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	0 0 0 0 0 0 0 0 _B
9Fн	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	Ов
АОн	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	0 0 0 1 1 0 0 Ов
А1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	1111100в
A2н to A7н		Reserved	<u> </u>		
А8н	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B
А9н	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	100100в
AAн to ADн	Reserved				
АЕн	Flash Memory Control Status Register (MB90F598/F598G only. Otherwise reserved)	FMCS	R/W	Flash Memory	0 0 0 Х 0 0 0 0в
AFн		Reserved	i		

Address	Register	Abbreviation	Access	Peripheral	Initial value
В0н	Interrupt Control Register 00	ICR00	R/W		00000111в
В1н	Interrupt Control Register 01	ICR01	R/W	Interrupt controller Interrupt controller Interrupt controller Interrupt controller	00000111в
В2н	Interrupt Control Register 02	ICR02	R/W	interrupt controller	00000111в
В3н	Interrupt Control Register 03	ICR03	R/W		00000111в
В4н	Interrupt Control Register 04	ICR04	R/W	Interrupt controller	00000111В
В5н	Interrupt Control Register 05	ICR05	R/W		00000111В
В6н	Interrupt Control Register 06	ICR06	R/W		00000111В
В7н	Interrupt Control Register 07	ICR07	R/W		00000111в
В8н	Interrupt Control Register 08	ICR08	R/W		00000111в
В9н	Interrupt Control Register 09	ICR09	R/W		00000111в
ВАн	Interrupt Control Register 10	ICR10	R/W		00000111в
ВВн	Interrupt Control Register 11	ICR11	R/W		00000111в
ВСн	Interrupt Control Register 12	ICR12	R/W		00000111в
ВОн	Interrupt Control Register 13	ICR13	R/W		00000111в
ВЕн	Interrupt Control Register 14	ICR14	R/W		00000111в
ВҒн	Interrupt Control Register 15	ICR15	R/W		00000111в
C0н to FFн		Rese	rved		
1900н	Reload Register L	PRLL0	R/W		XXXXXXXX
1901н	Reload Register H	PRLH0	R/W		XXXXXXXX
1902н	Reload Register L	PRLL1	R/W	Generator 0/1	XXXXXXXX
1903н	Reload Register H	PRLH1	R/W		XXXXXXXX
1904н	Reload Register L	PRLL2	R/W		XXXXXXXX
1905н	Reload Register H	PRLH2	R/W	16-bit Programmable Pulse	XXXXXXXX
1906н	Reload Register L	PRLL3	R/W	Generator 2/3	XXXXXXXX
1907н	Reload Register H	PRLH3	R/W		XXXXXXXX
1908н	Reload Register L	PRLL4	R/W		XXXXXXXX
1909н	Reload Register H	PRLH4	R/W	16-bit Programmable	XXXXXXXX
190Ан	Reload Register L	PRLL5	R/W	Pulse Generator 4/5	XXXXXXXX
190Вн	Reload Register H	PRLH5	R/W		XXXXXXXX
190Сн	Reload Register L	PRLL6	R/W		XXXXXXXX
190Dн	Reload Register H	PRLH6	R/W	16-bit Programmable	XXXXXXXX
190Ен	Reload Register L	PRLL7	R/W	Pulse Generator 6/7	XXXXXXXX
190Гн	Reload Register H	PRLH7	R/W		XXXXXXXX

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
1910н	Reload Register L	PRLL8	R/W		XXXXXXXX
1911н	Reload Register H	PRLH8	R/W	16-bit Programmable Pulse	XXXXXXXX
1912н	Reload Register L	PRLL9	R/W	Generator 8/9	XXXXXXXX
1913н	Reload Register H	PRLH9	R/W		XXXXXXXX
1914н	Reload Register L	PRLLA	R/W	16-bit Programmable	XXXXXXXX
1915н	Reload Register H	PRLHA	R/W	Pulse Generator A/B	XXXXXXX
1916н	Reload Register L	PRLLB	R/W	16-bit Programmable	XXXXXXXI
1917н	Reload Register H	PRLHB	R/W	Pulse Generator A/B	XXXXXXXI
1918н to 191Fн		Res	served		
1920н	Input Capture Register 0 (low-order)	IPCP0	R		XXXXXXX
1921н	Input Capture Register 0 (high-order)	IPCP0	R	Land 1 October 2/4	XXXXXXXX
1922н	Input Capture Register 1 (low-order)	IPCP1	R	Input Capture 0/1	XXXXXXX
1923н	Input Capture Register 1 (high-order)	IPCP1	R		XXXXXXXX
1924н	Input Capture Register 2 (low-order)	IPCP2	R		XXXXXXX
1925н	Input Capture Register 2 (high-order)	IPCP2	R	Innut Conturo 2/2	XXXXXXXX
1926н	Input Capture Register 3 (low-order)	IPCP3	R	Input Capture 2/3	XXXXXXXX
1927н	Input Capture Register 3 (high-order)	IPCP3	R		XXXXXXXX
1928н	Output Compare Register 0 (low-order)	OCCP0	R/W		XXXXXXXX
1929н	Output Compare Register 0 (high-order)	OCCP0	R/W	Output Common 0/4	XXXXXXXX
192Ан	Output Compare Register 1 (low-order)	OCCP1	R/W	Output Compare 0/1	XXXXXXXX
192Вн	Output Compare Register 1 (high-order)	OCCP1	R/W		XXXXXXXX

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value					
192Сн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXX					
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/3	XXXXXXXX					
192Ен	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/3	XXXXXXX					
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXX					
1930н to 19FFн		Reserved								
1A00н to 1AFFн	CAN Cont	roller. Refer to	section ab	out CAN Controller						
1В00н to 1ВFFн	CAN Cont	CAN Controller. Refer to section about CAN Controller								
1С00н to 1EFFн		Res	served							
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXX					
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXX					
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXX					
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXX					
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXX					
1FF5н	Program Address Detection Register 1 (high-order)				XXXXXXX					
1FF6н to 1FFFн		Res	served							

Note: Initial value of "_" represents unused bit; "X" represents unknown value.

Addresses in the rage 0000H to 00FFH, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

■ CAN CONTROLLER

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
 - 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as 1D acceptance mask
 - Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 Kbit/s to 2 Mbit/s (when input clock is at 16 MHz)

List of Control Registers

Address	Register	Abbreviation	Access	Initial Value	
000080н	Message buffer valid register	BVALR	R/W	00000000 00000000	
000081н	Wessage buller valid register	DVALK	17/ 77	00000000 0000000	
000082н	Transmit request register	TREQR	R/W	00000000 00000000	
000083н	— Transmit request register	INEQN	IX/VV	00000000 0000000	
000084н	Transmit cancel register	TCANR	W	0000000 00000000	
000085н	— Transmit cancer register	TCANK	VV	00000000 0000000	
000086н	Transmit complete register	TCR	R/W	0000000 00000000	
000087н	— Transmit complete register	TOR	IX/VV	00000000 0000000	
000088н	Receive complete register	RCR	R/W	0000000 00000000	
000089н	Receive complete register	KCK	IX/VV	00000000 0000000	
00008Ан	Remote request receiving register	RRTRR	R/W	0000000 00000000	
00008Вн	Tremote request receiving register	KIXTIXIX	17/ 77	00000000 0000000	
00008Сн	Receive overrun register	ROVRR	R/W	0000000 00000000	
00008Dн	Receive overruit register	KOVKK	IN/ V V	00000000 0000000	
00008Ен	Receive interrupt enable register	RIER	R/W	00000000 00000000	
00008Fн	Receive interrupt enable register	RIER	IX/VV	00000000 0000000	
001В00н	Control status register	CSR	R/W, R	00000 00-1в	
001В01н	Control status register	COIX	17/77, 17	UUUUU UU-1B	
001В02н	Last event indicator register	LEIR	R/W	000-000в	
001В03н	Last event indicator register	LEIK	FX/ V V	UUU-UUUB	
001В04н	Receive/transmit error counter	RTEC	R	0000000 0000000	
001В05н	Receive/transmit entor counter	KIEC	, K	00000000 00000000В	
001В06н	Dit timing register	BTR	R/W	1111111 111111111	
001В07н	Bit timing register	BIK	K/VV	-1111111 11111111в	

Address	Register	Abbreviation	Access	Initial Value	
001В08н	IDE register	IDER	R/W	XXXXXXXX XXXXXXXX	
001В09н	TDE register	IDEN	IX/VV	XXXXXXX XXXXXXX	
001В0Ан	Transmit RTR register	TRTRR	R/W	00000000 00000000	
001В0Вн	Transmit KTK register	TIVITAL	17/ / /	00000000 00000000	
001В0Сн	Remote frame receive waiting register	RFWTR	R/W	XXXXXXXX XXXXXXXX	
001В0Dн	Tremote mame receive waiting register	IXI VV IIX	17/ / /	ANNONANA ANNONANA	
001В0Ен	Transmit interrupt enable register	TIER	R/W	00000000 00000000	
001В0Гн	Transmit interrupt enable register	UEK	17/ / /	0000000 0000000B	
001В10н				XXXXXXXX XXXXXXXX	
001В11н	Acceptance mask select register	AMSR	R/W	700000000000000000000000000000000000000	
001В12н	Acceptance mask select register			XXXXXXXX XXXXXXXX	
001В13н				XXXXXXX XXXXXXX	
001В14н				XXXXXXXX XXXXXXXX	
001В15н	Acceptance mask register 0	AMR0	R/W	AAAAAAA AAAAAAA	
001В16н	Acceptance mask register o	AIVINO	IN/VV	XXXXX XXXXXXXX	
001В17н				XXXX XXXXXXX	
001В18н				XXXXXXXX XXXXXXXX	
001В19н	Acceptance mask register 1	AMR1	R/W	VVVVVVV VVVVVV	
001В1Ан	Acceptance mask register i	AIVIT	FX/ V V	XXXXX XXXXXXXXB	
001В1Вн					

List of Message Buffers (ID Registers)

Address	Register	sage Buffers (ID Abbreviation	Access	Initial Value
001A00н to 001A1Fн	General-purpose RAM		R/W	XXXXXXXB to XXXXXXXB
001A20н 001A21н	ID verietes 0	IDDO	R/W	XXXXXXXX XXXXXXXX
001A22н 001A23н	ID register 0	IDR0	R/VV	XXXXX XXXXXXXXB
001A24н 001A25н	ID register 1	IDR1	R/W	XXXXXXXX XXXXXXXXB
001A26н 001A27н	Tib register i	IDICI	IV/VV	XXXXX XXXXXXXXB
001A28н 001A29н	ID register 2	IDR2	R/W	XXXXXXXX XXXXXXXX
001A2Aн 001A2Bн	To register 2	IDIXZ	IV/VV	XXXXX XXXXXXXXB
001A2Cн 001A2Dн	ID register 3	IDR3	R/W	XXXXXXXX XXXXXXXXB
001A2Eн 001A2Fн	Tib register 3	IDKS	N/VV	XXXXX XXXXXXXXB
001A30н 001A31н	ID register 4	IDR4	R/W	XXXXXXXX XXXXXXXXB
001A32н 001A33н	Tib Tegister 4	IDIX4	IV/VV	XXXXX XXXXXXXXB
001A34н 001A35н	ID register 5	IDR5	R/W	XXXXXXXX XXXXXXXXB
001A36н 001A37н	ID register 5	טוטו	17/ / /	XXXXX XXXXXXXXB
001A38н 001A39н	ID register 6	IDR6	R/W	XXXXXXXX XXXXXXXXB
001А3Ан 001А3Вн		IDIO	17/77	XXXXX XXXXXXXXB
001A3Cн 001A3Dн	ID register 7	IDR7	R/W	XXXXXXXX XXXXXXXB
001А3Ен 001А3Fн	iogister /	IDIVI	17/ //	XXXXX XXXXXXXXB

Address	Register	Abbreviation	Access	Initial Value
001А40н				VVVVVVV VVVVVV-
001А41н	ID register 9	IDR8	R/W	XXXXXXXX XXXXXXXB
001А42н	ID register 8	IDRO	IT/VV	XXXXX XXXXXXXXB
001А43н			VVVV VVVVVVR	
001А44н				XXXXXXXX XXXXXXXX
001А45н	ID register 9	IDR9	R/W	XXXXXXX XXXXXXX
001А46н	To register 9	IDI(9	IX/VV	XXXXX XXXXXXXX _B
001А47н				XXXX XXXXXXXB
001А48н				XXXXXXXX XXXXXXXX
001А49н	ID register 10	IDR10	R/W	XXXXXXX XXXXXXX
001А4Ан	To register 10	IDICIO	IX/VV	XXXXX XXXXXXXX
001А4Вн				XXXX XXXXXXXB
001А4Сн				XXXXXXXX XXXXXXXXB
001А4Dн	ID register 11	IDR11	R/W	AAAAAAA AAAAAAAAB
001А4Ен	To register 11	IDIXII	IX/VV	XXXXX XXXXXXXXB
001А4Гн				//////
001А50н				XXXXXXXX XXXXXXXXB
001А51н	ID register 12	IDR12	R/W	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
001А52н	To register 12		17,77	XXXXX XXXXXXXX _B
001А53н				700000 700000000
001А54н				XXXXXXXX XXXXXXXX
001А55н	ID register 13	IDR13	R/W	700000000000000000000000000000000000000
001А56н	12 Togister To	151(10	10,00	XXXXX XXXXXXXXB
001А57н				77777
001А58н				XXXXXXXX XXXXXXXXB
001А59н	ID register 14	IDR14	R/W	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
001А5Ан	12 10910101 11	151(17	10,00	XXXXX XXXXXXXX _B
001А5Вн				,00000 ,00000000
001А5Сн				XXXXXXXX XXXXXXXX
001А5Дн	ID register 15	IDR15	R/W	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
001А5Ен		12.00	14,44	XXXXX XXXXXXXX _B

List of Message Buffers (DLC Registers and Data Registers)

Address	List of Message Buffe Register	Abbreviation	Access	Initial Value	
001А60н	DI O continuo	DI ODO	D 044	XXXXX	
001А61н	-DLC register 0	DLCR0	R/W	XXXX _B	
001А62н	DLC register 1	DLCR1	R/W	XXXX _B	
001А63н	-DLC register 1	DLCKI	R/VV	\ \\\\	
001А64н	DLC register 2	DLCR2	R/W	XXXX _B	
001А65н	DEG register 2	DEONE	10,00	7000b	
001А66н	DLC register 3	DLCR3	R/W	XXXX _B	
001А67н	DEG TOGISTOL G	DEGREE	1000	7000	
001А68н	DLC register 4	DLCR4	R/W	XXXX _B	
001А69н					
001А6Ан	DLC register 5	DLCR5	R/W	XXXX _B	
001А6Вн					
001А6Сн	DLC register 6	DLCR6	R/W	XXXX _B	
001A6Dн					
001А6Ен	DLC register 7	DLCR7	R/W	XXXX _B	
001A6Fн					
001A70н 001A71н	DLC register 8	DLCR8	R/W	XXXX	
001А71н					
001А72н	DLC register 9	DLCR9	R/W	XXXX _B	
001А74н					
001А75н	DLC register 10	DLCR10	R/W	XXXX _B	
001А76н					
001А77н	DLC register 11	DLCR11	R/W	XXXX _B	
001А78н					
001А79н	DLC register 12	DLCR12	R/W	XXXX _B	
001А7Ан	DI Commission 40	DI 0540	DAA	WWW	
001А7Вн	-DLC register 13	DLCR13	R/W	XXXX _B	
001А7Сн	DLC register 14	DI CB14	R/W	VVV-	
001А7Dн	-DLC register 14	DLCR14	K/VV	XXXX _B	
001А7Ен	DLC register 15	DLCR15	R/W	XXXX _B	
001А7Гн	DEG register 13	DLONIO	IX/VV	VVVR	
001A80н to 001A87н	Data register 0 (8 bytes)	DTR0	R/W	XXXXXXXB to XXXXXXXB	

Address	Register	Abbreviation	Access	Initial Value
001A88н to 001A8Fн	Data register 1 (8 bytes)	DTR1	R/W	XXXXXXXB to XXXXXXXXB
001A90н to 001A97н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXB to XXXXXXXXB
001A98н to 001A9Fн	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXB to XXXXXXXXB
001AA0н to 001AA7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXB to XXXXXXXXB
001AA8н to 001AAFн	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXB to XXXXXXXXB
001AB0н to 001AB7н	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXB to XXXXXXXXB
001AB8н to 001ABFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXB to XXXXXXXXB
001AC0н to 001AC7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXB to XXXXXXXXB
001AC8н to 001ACFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXB to XXXXXXXXB
001AD0н to 001AD7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXB to XXXXXXXXB
001AD8н to 001ADFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXB to XXXXXXXXB
001AE0н to 001AE7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXB to XXXXXXXXB
001AE8н to 001AEFн	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXB to XXXXXXXXB
001AF0н to 001AF7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXB to XXXXXXXXB
001AF8н to 001AFFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXB to XXXXXXXXB

■ INTERRUPT MAP

Interment course	El ² OS	Interru	pt vector	Interrupt control register		
Interrupt source	clear	Number	Address	Number	Address	
Reset	N/A	# 08	FFFFDCH			
INT9 instruction	N/A	# 09	FFFFD8 _H			
Exception	N/A	# 10	FFFFD4 _H			
CAN RX	N/A	# 11	FFFFD0 _H	ICDOO	0000В0н	
CAN TX/NS	N/A	# 12	FFFFCCH	ICR00	ООООБОН	
External Interrupt (INT0/INT1)	*1	# 13	FFFFC8 _H	ICD04	0000001	
Time Base Timer	N/A	# 14	FFFFC4 _H	ICR01	0000В1н	
16-bit Reload Timer 0	*1	# 15	FFFFC0 _H	ICDO	000000	
8/10-bit A/D Converter	*1	# 16	FFFFBCH	ICR02	0000В2н	
I/O Timer	N/A	# 17	FFFFB8 _H	ICDO2	000000	
External Interrupt (INT2/INT3)	*1	# 18	FFFFB4 _H	ICR03	0000ВЗн	
Serial I/O	*1	# 19	FFFFB0 _H	ICD04	000000	
External Interrupt (INT4/INT5)	*1	# 20	FFFFAC⊦	ICR04	0000В4н	
Input Capture 0	*1	# 21	FFFFA8 _H	ICR05	0000В5н	
8/16-bit PPG 0/1	N/A	# 22	FFFFA4 _H	ICRUS		
Output Compare 0	*1	# 23	FFFFA0 _H	ICDOS	0000В6н	
8/16-bit PPG 2/3	N/A	# 24	FFFF9C _H	ICR06		
External Interrupt (INT6/INT7)	*1	# 25	FFFF98⊦	ICD07	0000В7н	
Input Capture 1	*1	# 26	FFFF94 _H	ICR07		
8/16-bit PPG 4/5	N/A	# 27	FFFF90⊦	ICR08	000000	
Output Compare 1	*1	# 28	FFFF8C _H	ICKUO	0000В8н	
8/16-bit PPG 6/7	N/A	# 29	FFFF88 _H	ICR09	000000	
Input Capture 2	*1	# 30	FFFF84 _H	ICRU9	0000В9н	
8/16-bit PPG 8/9	N/A	# 31	FFFF80⊦	ICR10	0000ВАн	
Output Compare 2	*1	# 32	FFFF7C _H	ICKIU	UUUUDAH	
Input Capture 3	*1	# 33	FFFF78⊦	ICR11	0000ВВн	
8/16-bit PPG A/B	N/A	# 34	FFFF74 _H	ICKII	ООООВЬН	
Output Compare 3	*1	# 35	FFFF70⊦	ICR12	0000ВСн	
16-bit Reload Timer 1	*1	# 36	FFFF6C _H	ICKIZ	ООООВСН	
UART 0 RX	*2	# 37	FFFF68⊦	ICR13	000080	
UART 0 TX	*1	# 38	FFFF64 _H	IONIS	0000ВDн	
UART 1 RX	*2	# 39	FFFF60⊦	ICD44	OOODE	
UART 1 TX	*1	# 40	FFFF5C _H	ICR14	0000ВЕн	
Flash Memory	N/A	# 41	FFFF58⊦	ICR15	0000PE	
Delayed interrupt	N/A	# 42	FFFF54 _H	IUKID	0000ВFн	

- *1: The interrupt request flag is cleared by the El²OS interrupt clear signal.
- *2: The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

N/A:The interrupt request flag is not cleared by the El²OS interrupt clear signal.

- Note: For a peripheral module with two interrupt for a single interrupt number, both interrupt request flags are cleared by the El²OS interrupt clear signal.
 - At the end of El²OS, the El²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the El²OS and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the El²OS clear signal caused by the first event. So it is recommended not to use the El²OS for this interrupt number.
 - If El²OS is enabled, El²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same El²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the El²OS, the other interrupt should be disabled.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = 0 V)

Parameter	Symbol	Rat	ing	Unit	Remarks			
Parameter	Syllibol	Min.	Max.	Ullit	iveillai ks			
	Vcc	Vss - 0.3	Vss + 6.0	V				
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc *1			
Power supply voltage	AVRH,	Vss - 0.3	V ₂₂ + 6.0	V	AVcc ≥ AVRH/L,			
	AVRL			-	AVRH ≥ AVRL *1			
	DVcc	Vss - 0.3		V	Vcc ≥ DVcc			
Input voltage	Vı	Vss - 0.3	Vss + 6.0	V	*2			
Output voltage	Vo	Vss - 0.3	Vss + 6.0	V	*2			
Clamp Current	I CLAMP	-2.0	2.0	mΑ				
"L" level max. output current	I _{OL1}	_	15	mΑ	Normal output *3			
"L" level avg. output current	lolav1	_	4	mΑ	Normal output, average value *4			
"L" level max. output current	lol2	_	40	mΑ	High current output *3			
"L" level avg. output current	OLAV2	_	30	mΑ	High current output, average value *4			
"L" level max. overall output current	\sum lol1	_	100	mΑ	Total normal output			
"L" level max. overall output current	\sum lol2		330	mΑ	Total high current output			
"L" level avg. overall output current	\sum lolav1	_	50	mΑ	Total normal output, average value *5			
"L" level avg. overall output current	\sum lolav2		250	mA	Total high current output, average value *5			
"H" level max. output current	І он1	_	-15	mΑ	Normal output *3			
"H" level avg. output current	lohav1	_	-4	mΑ	Normal output, average value *4			
"H" level max. output current	10н2	_	-40	mΑ	High current output *3			
"H" level avg. output current	lohav2	_	-30	mΑ	High current output, average value *4			
"H" level max. overall output current	∑Іон1	_	-100	mΑ	Total normal output			
"H" level max. overall output current	∑lo _{H2}	_	-330	mΑ	Total high current output			
"H" level avg. overall output current	∑Iohav1	_	-50	mΑ	Total normal output, average value *5			
"H" level avg. overall output current	∑lohav2	_	-250	mA	Total high current output, average value *5			
Power consumption	PD	_	500	mW	MB90F598/F598G			
I ower consumption	Fυ		400	mW	MB90598			
Operating temperature	TA	-40	+85	°C				
Storage temperature	Тѕтс	-55	+150	°C				

^{*1:} AVcc, AVRL and AVRL does not exceed Vcc and AVRL does not exceed AVRH.

Note: Average output current = operating current × operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} V_I and V_O should not exceed V_{CC} + 0.3V. V_I should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supercedes the V_I rating.

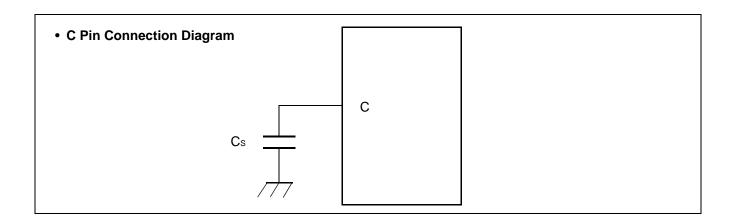
^{*3:} The maximum output current is a peak value for a corresponding pin.

^{*4:} Average output current is an average current value observed for a 100 ms period for a corresponding pin.

^{*5:} Total average current is an average current value observed for a 100 ms period for all corresponding pins.

2. Recommended Conditions

(Vss = AVss = 0 V)


Parameter	Symbol	Value			Unit	Remarks		
raiametei	Symbol	Min.	Тур.	Max.	Oille	ixemarks		
Power supply voltage	Vcc	4.5	5.0	5.5	V	Under normal operation		
Fower supply voltage	AVcc	3.0	_	5.5	V	Maintains RAM data in stop mode		
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*		
Operating temperature	TA	-40		+85	°C			

^{*:} Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

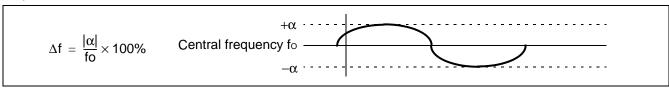
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

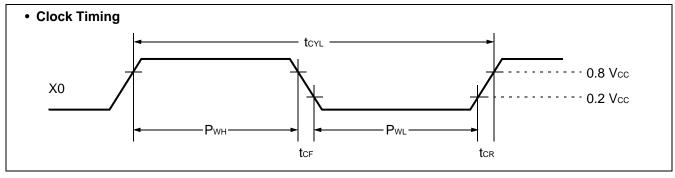
3. DC Characteristics

 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0V, T_A = -40 °C to +85 °C)$

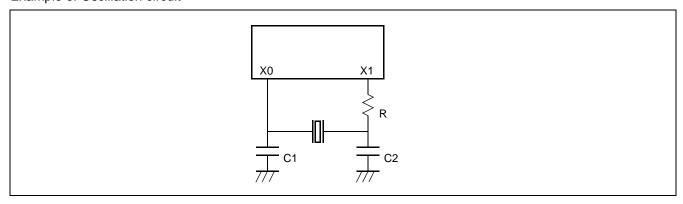
Banamatan	Sym-	Din nome	(Vcc = 5.0 V		Value		Unit	
Parameter	bol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
Input H voltage	VIHS	CMOS hysteresis input pin	_	0.8 Vcc		Vcc +0.3	V	
input 11 voltage	Vінм	MD input pin	_	Vcc - 0.3		Vcc +0.3	٧	
Input L voltage	VILS	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	
input L voltage	VILM	MD input pin	_	Vss - 0.3	_	Vss +0.3	V	
Output H voltage	Vон1	Output pins except P70 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OH1} = -4.0 \text{ mA}$	Vcc - 0.5	_	_	V	
Output H voltage	V _{OH2}	P70 to P87	Vcc = 4.5 V, $IoH2 = -30.0 mA$	Vcc - 0.5		_	V	
Output L voltage	V _{OL1}	Output pins except P70 to P87	Vcc = 4.5 V, lo _{L1} = 4.0 mA	_	_	0.4	V	
Output L voltage	V _{OL2}	P70 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OL2} = 30.0 \text{ mA}$	_	_	0.5	V	
Input leak current	Iц		Vcc = 5.5 V, Vss < Vı < Vcc	- 5	_	5	μΑ	
	lcc		Vcc = 5.0 V±10%,	_	35	60	mA	MB90598
			Internal frequency: 16 MHz, At normal operating		50	90	mΑ	MB90F598
				_	40	60	mA	MB90F598G
	Iccs		Vcc = 5.0 V±10%, Internal frequency: 16 MHz, At sleep		11	18	mA	
Power supply current *	Істѕ	Vcc	Vcc = 5.0 V±1%, Internal frequency: 2 MHz, At timer mode	_	0.3	0.6	mA	
	Іссн		Vcc = 5.0 V±10%, At stop, T _A = 25°C	_	_	20	μΑ	
	Іссн2		Vcc = 5.0 V±10%, At Hardware stand-	_		20	μΑ	MB90598 MB90F598
			by mode, TA = 25°C	_	50	100	μΑ	MB90F598G
Input capacity	Cin	Other than C, AVcc, AVss, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87	_	_	5	15	pF	
		P70 to P87	_	_	15	30	pF	

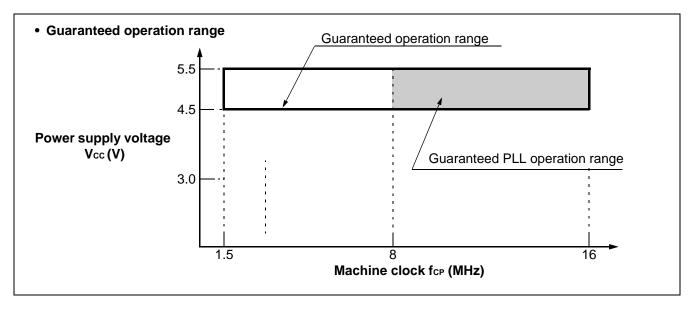
^{*:} Current values are tentative and subject to change without notice according to improvements in the characteristics. The power supply current testing conditions are when using the external clock.

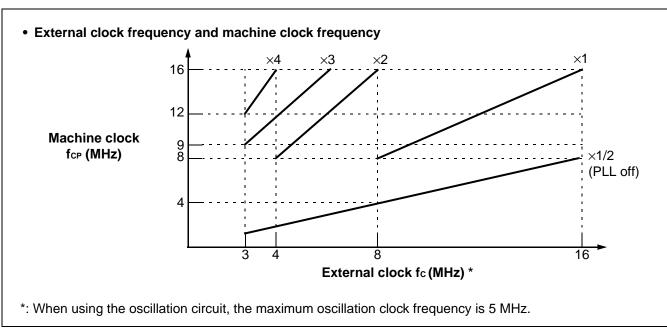

4. AC Characteristics

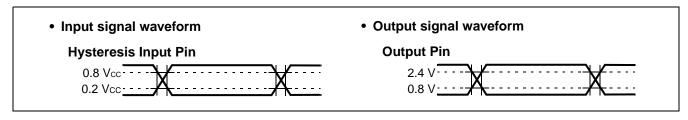

(1) Clock Timing

 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0V, T_A = -40 °C to +85 °C)$


Parameter	Symbol	Pin name		Value		Unit	Remarks
Farameter	Syllibol	riii iiaiiie	Min.	Тур.	Max.	Oilit	Nemarks
Oscillation frequency	fc	X0, X1	3	1	5	MHz	When using an oscillation circuit
Oscillation frequency	IC .	70, 71	3		16	MHz	When using an external clock
Oscillation cycle time	t cyL	X0, X1	200	_	333	ns	When using an oscillation circuit
Oscillation cycle time	lCYL.	Λυ, Λ1	62.5		333	ns	When using an external clock
Frequency deviation with PLL *	Δf	_	_	_	5	%	
Input clock pulse width	Pwh, PwL	X0	10	_	_	ns	Duty ratio is about 30 to 70%.
Input clock rise and fall time	tcr, tcf	X0	_	_	5	ns	When using external clock
Machine clock frequency	f CP	_	1.5	_	16	MHz	
Machine clock cycle time	t CP	_	62.5		666	ns	


^{*:} Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.

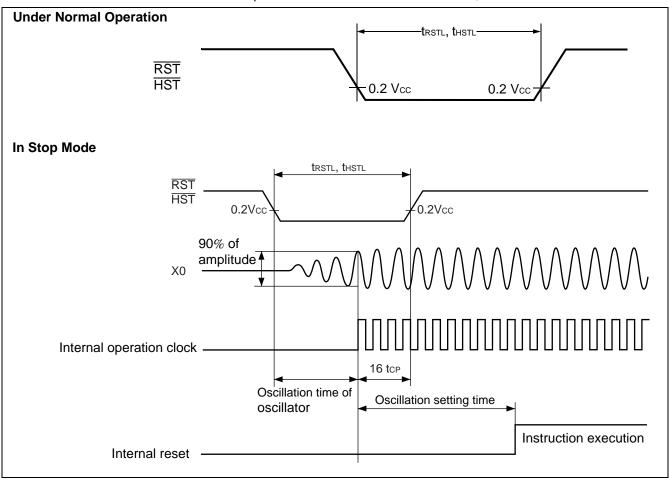



Example of Oscillation circuit

AC characteristics are set to the measured reference voltage values below.

(2) Reset and Hardware Standby Input

 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0V, T_A = -40 °C to +85 °C)$


Parameter	Parameter Symbol Pin nam		Value		Unit	Remarks
Farameter			Min.	Max.		Nemarks
			16 tcp*1		ns	Under normal operation
Reset input time	t RSTL	RST	Oscillation time of oscillator*2 + 16 tcp*1		ms	In stop mode
			16 t _{CP} *1	1	ns	Under normal operation
Hardware standby input time	t HSTL	HST	Oscillation time of oscillator*2 + 16 tcp*1		ms	In stop mode

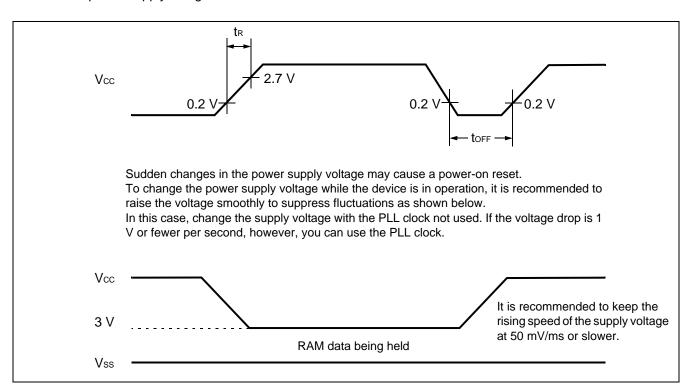
^{*1: &}quot;tcp" represents one cycle time of the machine clock.

No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

*2: Oscillation time of oscillator is time that the amplitude reached the 90%.

In the crystal oscillator, the oscillation time is between several ms to tens of ms. In FAR / ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

(3)Power On Reset


(Vcc = 5.0 V \pm 10%, Vss = AVss = 0V, T_A = -40 °C to +85 °C)

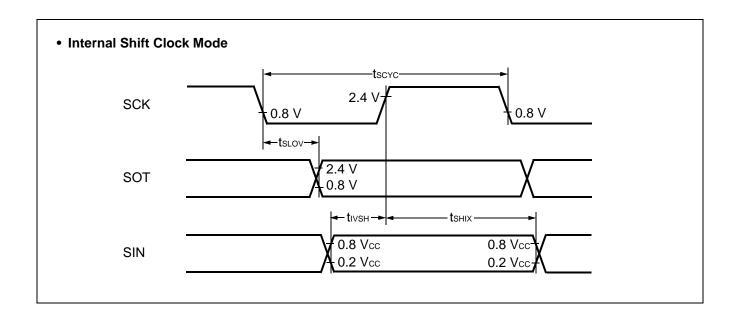
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Syllibol	riii iiaiiie	Condition	Min.	Max.	Oilit	Remarks
Power on rise time	t R	Vcc		0.05	30	ms	*
Power off time	t off	Vcc	_	50	_	ms	Due to repetitive operation

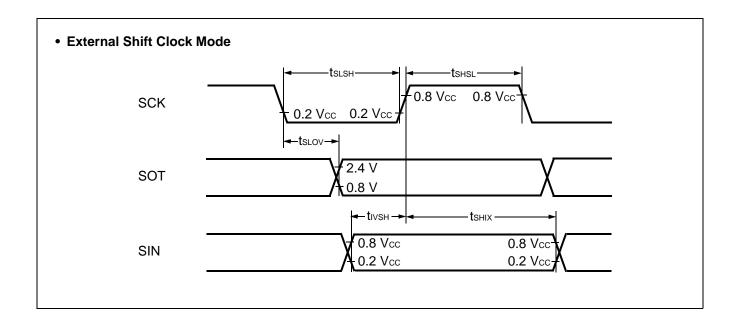
^{*:} Vcc must be kept lower than 0.2 V before power-on.

Note: • The above values are used for creating a power-on reset.

• Some registers in the device are initialized only upon a power-on reset. To initialize these register, turn on the power supply using the above values.

(4) UART0/1, Serial I/O Timing

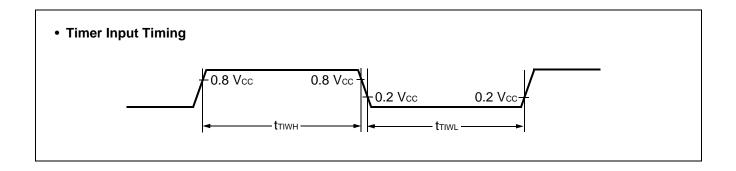

 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0V, T_A = -40 °C to +85 °C)$


Parameter	Symbol Pin name		Condition	Value		Unit	Remarks
raiailletei	Syllibol	Fill Hallie	Condition	Min.	Max.	Oilit	Remarks
Serial clock cycle time	t scyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \Rightarrow SOT$ delay time	tslov	SCK0 to SCK2, SOT0 to SOT2	Internal clock oper-	-80	80	ns	
Valid SIN ⇒ SCK ↑	t ıvsh	SCK0 to SCK2, SIN0 to SIN2	ation output pins are $C_L = 80 \text{ pF} + 1 \text{ TTL}.$	100		ns	
SCK ↑ ⇒ Valid SIN hold time	t sнıx	SCK0 to SCK2, SIN0 to SIN2		60		ns	
Serial clock "H" pulse width	t shsl	SCK0 to SCK2		4 tcp	_	ns	
Serial clock "L" pulse width	t slsh	SCK0 to SCK2		4 tcp	_	ns	
$SCK \downarrow \; \Rightarrow SOT$ delay time	tslov	SCK0 to SCK2, SOT0 to SOT2	External clock operation output pins are	_	150	ns	
Valid SIN ⇒ SCK ↑	tıvsн	SCK0 to SCK2, SIN0 to SIN2	C _L = 80 pF + 1 TTL.	60		ns	
$SCK \uparrow \Rightarrow Valid SIN hold time$	tsнıх	SCK0 to SCK2, SIN0 to SIN2		60		ns	

Note: 1. AC characteristic in CLK synchronized mode.

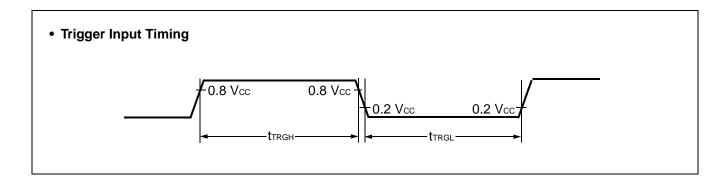
2. C_L is load capacity value of pins when testing.

3. tcp is the machine cycle (Unit: ns).



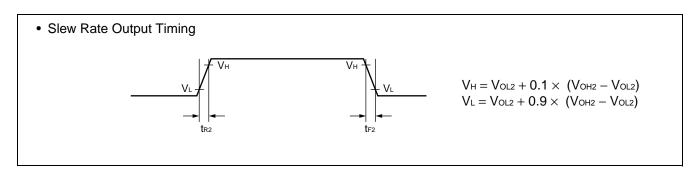
(5) Timer Input Timing

 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0V, T_A = -40 °C to +85 °C)$


Parameter	Svmbol	Pin name Condition		Val	lue	Unit	Remarks
raiametei	Syllibol	Fili lialile	Condition	Min.	Max.	Oilit	iveillai və
Input pulse width	t TIWH	TIN0, TIN1		4 tcp	_	nc	
input puise width	t TIWL	IN0 to IN3	_	4 I CP		ns	

(6) Trigger Input Timing

 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0V, T_A = -40 °C to +85 °C)$


Parameter	Symbol	Pin name Condition		Value		Unit	Remarks	
raiametei	Syllibol	Fili lialile	Condition	Min.	Max.	Oilit	Keillaiks	
Input pulse width	t trgh	INT0 to		5 t c₽	_	ns	Under normal operation	
Imput puise width	t trgl	INT7, ADTG	_	1		μs	In stop mode	

(7) Slew Rate High Current Outputs

 $(Vcc = 5.0 V\pm 10 \%, Vss = AVss = 0V, TA = -40 °C to +85 °C)$

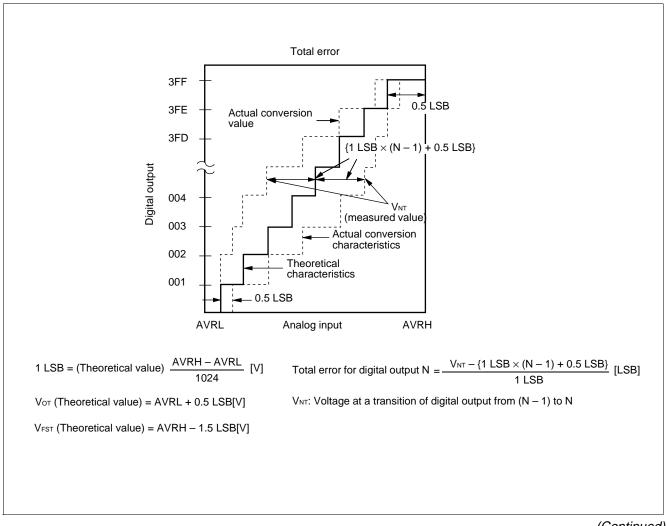
Parameter	Symbol Pin name	Symbol Pin name Condition			Value	Unit	Remarks	
Farameter		Condition	Min.	Тур.	Max.	Oilit	ixcilial ks	
Output Rise/Fall time	t _{R2}	Port P70 to P77, Port P80 to P87	_	15	40	150	ns	

5. A/D Converter

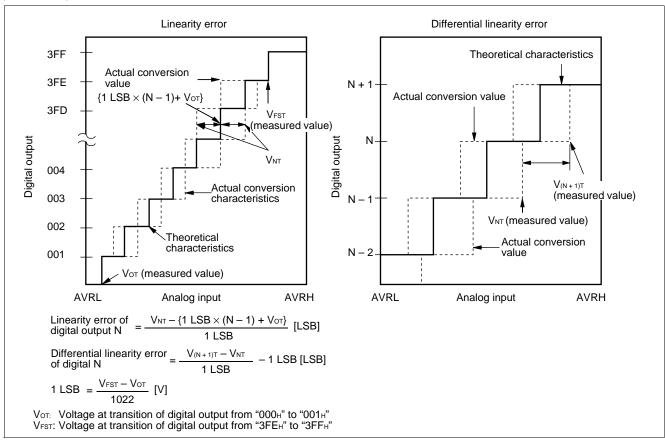
(Vcc = AVcc = $5.0 \text{ V} \pm 10\%$, Vss = AVss = 0 V, $3.0 \text{ V} \le \text{AVRH} - \text{AVRL}$, $T_A = -40 \,^{\circ}\text{C}$ to $+85 \,^{\circ}\text{C}$)

Parameter	Symbol	Pin name		Unit	Remarks		
Faranietei	Syllibol	riii iiaiiie	Min. Typ.		Max.	Offic	Remarks
Resolution	_	_	_		10	bit	
Conversion error	_	_	_	_	±5.0	LSB	
Nonlinearity error	_	_	_	_	±2.5	LSB	
Differential linearity error	_	_	_	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL – 3.5	AVRL +0.5	AVRL + 4.5	mV	
Full scale transition voltage	V _{FST}	AN0 to AN7	AVRH – 6.5	AVRH – 1.5	AVRH + 1.5	mV	
Conversion time	_	_	_	352t c₽	_	ns	
Sampling time	_	_	_	64t cp	_	ns	
Analog port input current	Iain	AN0 to AN7	-10	_	10	μΑ	
Analog input voltage range	Vain	AN0 to AN7	AVRL	_	AVRH	V	
Reference voltage range	_	AVRH	AVRL + 2.7	_	AVcc	V	
Therefore voltage range		AVRL	0	_	AVRH – 2.7	V	
Power supply current	la	AVcc	_	5	_	mA	
Tower supply current	Іан	AVcc	_	_	5	μΑ	*
Reference voltage current	lR	AVRH	_	400	600	μА	MB90V595 MB90V595G MB90F598 MB90F598G
			_	140	600	μΑ	MB90598
	IRH	AVRH	_	_	5	μΑ	*
Offset between input chan- nels	_	AN0 to AN7	_	_	4	LSB	

^{*:} When not operating A/D converter, this is the current (Vcc = AVcc = AVRH = 5.0 V) when the CPU is stopped.


6. A/D Converter Glossary

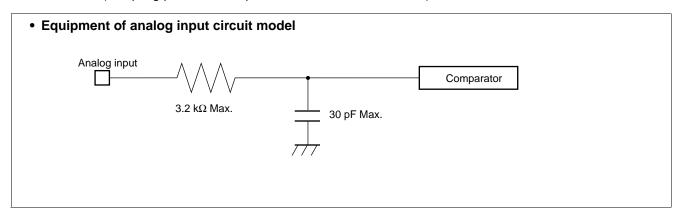
Resolution: Analog changes that are identifiable with the A/D converter


Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

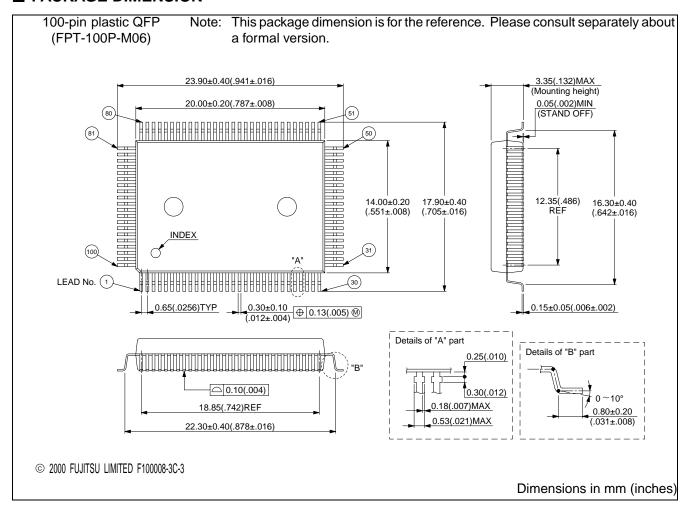


7. Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions,:

- Output impedance values of the external circuit of 15 kΩ or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \, \mu s$ @machine clock of $16 \, MHz$).


• Error

The smaller the | AVRH - AVRL |, the greater the error would become relatively.

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90598PF MB90F598PF MB90F598GPF	100-pin Plastic QFP (FPT-100P-M06)	
MB90V595CR MB90V595GCR	256-pin Ceramic PGA (PGA-256C-A01)	For evaluation

■ PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,

Tokyo 163-0721, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3386

http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park,

Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280

Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0101

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.